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Abstract. Given the good persistence of sea surface temperature (SST) due to the slow-varying nature of the ocean, an

atmospheric model coupled with a Slab Ocean Model (SOM) instead of a 3-D dynamical ocean model is designed as an

efficient approach for extended-range predictions. The prediction experiments from July to December 2020 are performed

based on the Weather Research and Forecasting (WRF) model coupled to the SOM (WRF-SOM) with the initial and15
boundary conditions same as the WRF coupled to the Regional Ocean Model System (WRF-ROMS). The WRF-SOM is

verified to have better performance of SSTs in the extended-range predictions than WRF-ROMS since it avoids the

complicated model biases from the ocean dynamics and seabed topography when extended-range predictions are made using

a 3-D dynamical ocean model. The improvement of SSTs can lead to the remarkable impact on the response of the

atmosphere from the surface to the upper layer. Taking typhoon as an example of extreme events, the WRF-SOM can obtain20
comparable intensity predictions and slightly improved track predictions due to the improved SSTs in the initialized WRF-

SOM system. Overall, the WRF-SOM can ensure the stability of extended-range prediction and reduce the demand for

computing resources by roughly 50%.
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1 Introduction

Extended-range predictions fill the gap between weather and climate predictions. Recent research has demonstrated kinds of

sources of predictability for the extended period such as the Madden-Julian Oscillation (MJO), the evolution of El Niño-35
Southern Oscillation, soil moisture, snow cover, sea ice, stratosphere-troposphere interactions, ocean conditions, and

tropical-extratropical teleconnections (Wheeler and Hendon, 2004; Vitart and Robertson, 2018). As a growing demand from

the applications community and progress in identifying and simulating key sources of extended period (Vitart, 2014; White

et al., 2017), it is worthwhile improving forecast skills for monthly-scale extended period predictions to realize the social

security, disaster early warning, agricultural management, and water resource management (David, 2010).40
In the extended period prediction, sea surface temperature (SST) is the most important information provided by the oceanic

model to the atmospheric model in the air-sea interaction. For instance, tropical SST plays an important role in controlling

the weather/climate worldwide by various teleconnection effects (David, 2010). Dian et al. (2013) demonstrated the

importance of air-sea interaction to the atmospheric mesoscale processes by comparing the response of the precipitation to

the SST between the coupled and uncoupled models. Furthermore, Stan (2018) emphasized that the SST anomaly can45
directly lead to the change in the convection intensity.

The ocean-atmosphere coupling has an important impact on the extended-range prediction skills (Vitart and Molteni, 2010).

Rashid et al. (2019) adopted the Bureau of Meteorology unified atmospheric model (BAM) coupled with the Australia

Community Ocean Model (ACOM) to predict the MJO and proposed that actual MJO prediction skills may be further

improved through continued development of the dynamical prediction system. The coupled ocean-atmosphere models are50
mainly used for numerical simulation and prediction in the extended period (Saravanan and Chang, 2019).

However, there are some inherent defects for the specific problems in extended-range prediction using atmosphere-ocean

coupled models. For instance, the 3-D dynamical ocean model inevitably introduces unnecessary biases from the seabed

topography, which can transport from bottom to surface during prediction (Wu et al., 1997). The 3-D dynamical ocean

model coupled to the atmospheric model can have cold drift during the extended-range prediction period due to the55
overestimation of latent heat in the coupled model (Ren and Qian, 2010). In addition, the sensitivity of ocean

thermodynamics to the ocean dynamics leads to the enhancement of mixing in the upper ocean and indirectly reduces SST

(Hu et al., 2017). European Centre for Medium-Range Weather Forecasts (ECMWF) summarized and evaluated the results

during the extended period prediction, and proposed that the improvement of extended-range prediction should be

accompanied by the significant reduction of SST biases in a coupled model (Palmer et al., 1990).60
Considering that SST is the most important factor provided by the ocean model and 3-D dynamical ocean models have a

deficiency in the SST prediction during the extended period, one possible way to improve this period prediction is that, we

only focus on the SST as the bottom boundary of atmospheric model for the extended-range prediction research. The SST

has good persistence in the extended period and only the thermal effect needs to be considered (the time scale of ocean

circulation is relatively long). According to that, the Slab Ocean Model (SOM) can be utilized as the ocean model for65
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extended-range prediction such that biases of SST are easier to manage (Zuidema, 2016). More importantly, the SOM can

greatly reduce the computing expense and obtain the forecast results more quickly, which can provide a more economical

and efficient method for further study.

In this paper, we develop a new approach using atmospheric model coupled with a Slab Ocean Model (WRF-SOM) to do

monthly-scale extended-range predictions. For comparison of the prediction results of WRF-SOM, we also carry out the70
forecast experiments using WRF coupled to the Regional Ocean Model System (ROMS) based on the regional coupled

prediction system for the Asia-Pacific (AP-RCP) developed by Li et al. (2020). Firstly, by comparing the performances of

SST predictions in the WRF-SOM and WRF-ROMS, we show the rationality of WRF-SOM in the extended-range

predictions. WRF-SOM can avoid the influence of cold deviation at the subsurface in WRF-ROMS on SST in extended

period. Secondly, we discuss the response of atmosphere (e.g., the air temperature, and geopotential height) on SSTs to75
identify the improvement of WRF-SOM compared with WRF-ROMS in the cold deviation area. Finally, taking typhoons as

the representation of the extreme weather events, we track the differences of typhoon paths and maximum wind speed

(MWS) between WRF-ROMS and WRF-SOM and suggest that the performances of typhoon predictions are basically

consistent in the two models during the extended period.

The rest of the paper is organized as follows. Section 2 details the source of SST biases, the brief introduction of WRF-SOM80
and WRF-ROMS, the experiment implementation, and the data sources. Section 3 evaluates the feasibility of SST

predictions in WRF-SOM, compares the response of the atmosphere to SSTs in WRF-SOM and WRF-ROMS, and verifies

the rationality of WRF-SOM in typhoon predictions. Finally, the summary and discussion are given in Section 4.

2 Methodology

2.1 Brief introduction of WRF-ROMS coupled model85

In this study, we use the high-resolution WRF-ROMS coupled system for comparison (Li et al., 2020). The system covers

the area of the Asia-Pacific, which consists of 27 km WRF, 9 km ROMS, and observational information through

dynamically downscaling coupled assimilation. The vertical layers of WRF and ROMS are 28 and 33 respectively. The time

step for both WRF and ROMS is 60 s, the coupled interval time between ocean and atmosphere is 600 s, and the forecast

lead time is 34 days for each case. The system is initialized from the Climate Forecast System Version2 reanalysis (CFSv2)90
(Saha et al., 2014), on January first, 2016, and spun up for two years. The system is verified for the precipitation forecast

skills, which is the highest among CFSv2, National Centers for Environmental Prediction-Global Ensemble Forecast system

(NCEP-GEFS) (https://www.nco.ncep.noaa.gov/pmb/products/gens/), and European Centre for Medium-Range Weather

Forecasts-Ensemble Prediction System (ECMWF-EPS) (https://www.ecmwf.int/en/forecasts/datasets). The operational

system has realized the extended-range prediction of atmospheric and oceanic environments and serves as an effective95
research platform to study the influence of model resolution on typical mesoscale atmospheric and oceanic phenomena in the
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Asia-Pacific area. The high-resolution prediction system enhances the capability of atmosphere-ocean coupled models to

describe many local details, which is a necessary step to discuss the predictability in the extended period.

2.2 Slab-Ocean scheme in a coupled model

In order to describe the response of the upper ocean to the surface wind, a simple model (SOM) is given (Raymond et al.,100
1973). Compared with the 3-D dynamical ocean model, the ocean mixed layer temperature is the only prognostic state

variable for the SOM to represent the SST. Jia et al. (2019) adopted the SOM to study the ocean mesoscale variability. The

related prognostic equation is the first law of thermodynamics for the ocean mixed layer given by Eq.(1):

ocnatm
mix

mixp Q-Q
t

T
hCρ =

∂
∂

, (1)

where ρ is the ocean water density, Cp is the specific heat capacity of the ocean water, hmix is the depth of the mixed layer,105
Tmix is the mixed layer temperature, Qatm is the net surface heat flux from the atmosphere to the mixed layer, and Qocn is the

net heat transfer from mixed-layer column to the subsurface. Eq.(2) shows the heat budget of the sea surface from the

atmosphere:

latentsenlsolatm Q-Q-Q-QQ = , (2)

where Qsol is the net radiative heating of the ocean mixed layer by solar radiation, Ql is the net longwave radiative cooling of110
the ocean mixed layer, Qsen is the net sensible heat flux from the ocean to the atmosphere, Qlatent is the net latent heat flux

from the ocean to the atmosphere. Qatm and Qocn are calculated synchronously with the prediction time in the model. Eq.(3)

shows the effect of Coriolis force and wind stress in the mixed layer:

, (3)115

where hu (hv) is the τx-driven (τy-driven) momentum in the ocean mixed layer, f is Coriolis force, and τx and τy are respectively

the zonal and meridional components of wind stress at the surface. Eq.(3) is calculated by time-centering difference and

Eq.(4) shows the variations of ocean mixed layer depth, which is affected by the wind stress and heat flux:

120
, (4)

where hmix is the mixed layer depth, g is the gravitational acceleration, Γ is the lapse rate of the water temperature, and α is

the thermal expansion coefficients.

Such basic driving processes of WRF-SOM and the relationship between the variables can be illustrated in Fig. 1. The SOM
125

is driven by the surface wind, sea surface heat flux, and heat conduction between the mixed layer and subsurface. The mixed
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layer depth is determined by the surface wind stress (τx and τy) and the heat budget (Qatm and Qocn) in the mixed layer. Both

the enhancement of surface wind stress and heat flux to the mixed layer will lead to the deepening of the mixed layer depth.

When the ocean surface is heated, there will be a temperature gradient from from sea surface to the areas beneath it. With the

wind stirring the upper layer, an almost uniform layer is formed, and there is a density gradient below the mixed layer. In the
130

upper mixed layer, the temperature is independent of depth. We assume that once the initial delamination is destroyed in this

layer, it will mix to a completely uniform state. It means that the ocean temperature is well-mixed and the SST is considered

the same as Tmix.

2.3 Implementation, data source (including model setting and initial condition sources), and data processing method

In this study, the WRF version WRF3.7.1 and the ROMS version ROMS3.8 is applied (Skamarock et al., 2008; Shchepetkin135
and Mcwilliams, 2005). The boundary condition of the forecast is interpolated from the CFSv2 forecast data set. The WRF-

ROMS is initialized from the CFSv2 reanalysis at 00 UTC on 1st January 2016, spun up for two years with the CFSv2

background boundary conditions, and applies the weakly coupled data assimilation approach (WCDA). The WCDA begins

after a 2-year spin for the coupled model. In addition, the atmospheric and oceanic components are restrained by the cycling

real-time operational data, which provides the initial conditions for the usual forecast. The simulation region covers the Asia-140
northwest Pacific and North Indian Ocean (74° E-180° E, 18° S-60° N). The forecasts are made every day from July 19th to

December 31st 2020. Each case generates a 34-day forecast for the atmosphere and ocean environment.

The WRF-SOM is completely consistent with WRF-ROMS in atmospheric model settings and the grid of SOM is consistent

with the atmospheric model. The forecast cases made by WRF-SOM are same to the WRF-ROMS expect for roughly 20

cases/days are missed, which is caused by hardware damage and untimely release of boundary information. Li and Ding145
(2011) proposed that the linear relationship between the predictability limit and the logarithm of initial error holds only in

the case of relatively small initial errors. If the initial errors are large, the growth of mean error would directly enter into the

nonlinear phase. Therefore, for each example, we keep the initial and boundary conditions of the WRF-SOM in the

atmosphere and ocean the same as those in the WRF-ROMS and assure that the forecast lead time of each example is over

one month.150
The Hybrid Coordinate Oceanic Circulation Model (HYCOM) reanalysis (https://www.hycom.org) used in this study is

provided by Naval Research Laboratory (Cummings and Smedstad, 2013). Considering the HYCOM reanalysis being a

mature and widely recognized forecast system, the global reanalysis data can be a good choice to verify the model prediction

performances. The typhoon observations are from the National Meteorological Center (NMC) of China

(http://typhoon.nmc.cn/web.html). The validation data of the atmospheric component is from CFSv2155
(https://rda.ucar.edu/datasets/ds094.1/). All the simulation experiments use the computing nodes configured with 24 central

processing unit (CPU) cores, 2.6 GHz dominant frequency, and 256 GB of global DDR4 memory.
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The predictability of SST in WRF-ROMS and WRF-SOM is evaluated by the root mean square error (RMSE) the anomaly

correlation coefficient (ACC), which is written as follows:

160
, (5)

, (6)

165

where xi,j is the forecast value, fi,j is the truth value (reanalysis data),
——

x j is the spatial average of the forecast value,
——

f j is the

spatial average of the truth value, and i = 1,2,3...M and j = 1,2,3....N represent grid points and time series respectively.

3 Comparing the forecast results of WRF-SOM with WRF-ROMS

3.1 Predictability of sea surface temperature and bias

In the 3-D dynamical ocean model, the SST prediction is affected by topography accuracy and ocean dynamics. Wu et al.170
(1997) suggested that due to the existence of seabed topography with finite amplitude, the wave models in a linear system

are no longer independent of each other, resulting in coupling between models. This coupling effect between models acts on

the circulation field in different ways, making the simple linear superposition of models no longer truly reflect the oceanic

circulation field structure. The effects of seabed topography on the baroclinic model should be stronger. Therefore, the

seabed topography can indirectly affect the SST through the circulation field. As for ocean dynamics, the inaccuracy of175
processes (advection, vertical mixing, and vertical diffusion) and atmosphere-land model jointly cause SST deviations (Hu et

al., 2017). The model resolution is another way affecting the SST prediction, which is verified that the biases can be slightly

eliminated in the Kuroshio extension area with the increase in model resolution (Li et al., 2020). Therefore, based on the

good persistence of SST, we can simplify the SST evolution process to avoid biases from the ocean dynamics and seabed

topography (Zuidema et al., 2016).180
The prediction skills of SST in the WRF-SOM and WRF-ROMS have been assessed by calculating the RMSE averaged of

142 forecast cases from July to December. Figure 2a shows the RMSE of SSTs in the WRF-SOM is generally lower than

that in the WRF-ROMS and both forecast errors increase with the lead time. The maximum different value of the RMSEs

variation between the WRF-SOM and WRF-ROMS occurs in 20-25 days. The averaged values of the SST errors in both

models are within 1.4℃ during the forecast period and the RMSEs of 75% forecast cases in WRF-SOM are better than those185
in WRF-ROMS, as shown in Fig. 2b. Moreover, the bias in the WRF-SOM grows more slowly than that in the WRF-ROMS.

Only at the start of the forecasts, the errors of SST in WRF-ROMS are lower than that in WRF-SOM. It is because the errors

in the 3-D dynamical ocean model have not spread from subsurface to the surface and initial condition still plays a major
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role (Lekshmi et al., 2022). To explore the spatial distribution of skills with different forecast periods in WRF-SOM, we use

the ACC of SST anomaly to characterize the temporal and spatial predictability of SST in the WRF-SOM and WRF-ROMS190
(Wu et al., 2016). Figure 2c shows that their overall ACC can reach more than 0.75 during the 34-day forecasts and the

performance of the WRF-SOM in the whole domain is higher than that of WRF-ROMS. Meanwhile, the ACC in 74%

forecast cases in WRF-SOM is better than those in WRF-ROMS, as shown in Fig. 2b. Finally, Figure 3a and 3b show the

forecast SSTs in WRF-ROMS have an obvious cold deviation in the area around the Kuril Islands and the Sea of Okhotsk

(35° N-58° N, 140° E-160° E).195
In order to explore the spatial distribution of SST prediction skills in the two models, especially in the cold deviation area,

we calculate ACC of SSTs at each grid point. Through the spatial distribution of ACC displayed in Fig. 4 in different

forecast periods, it is found that the predictability of WRF-SOM and WRF-ROMS decreases with time in the whole area.

Since the initial state of the ocean can be maintained for a period of time in the simulation, the main patterns of the ACC are

consistent in the two models, and the value increases with the latitude significantly. The higher skills of WRF-SOM are200
mainly concentrated in the area north of 15°N compared with WRF-ROMS. Over 60% grid points in the simulation area

have higher ACC values of SST in WRF-SOM, and the proportion rises slightly with the prediction time (green dots in the

right column of Fig. 4). Focused on the cold deviation area in the green rectangle, the proportion reaches more than 80% (red

dots in the right column of Fig. 4). In summary, the performance of SSTs in the WRF-SOM is more reasonable than the

WRF-ROMS in terms of temporal variation and spatial distribution of predictability.205
In order to explore the causes of cold deviation area in WRF-ROMS, the variations of averaged error of SST and the water

temperature at the subsurface are shown. Figure 5a-5c identifies the comparison of averaged mixed layer depth during the

prediction period. The mixed layer depth in WRF-ROMS is calculated by the depth at which the difference from SST is

0.2 ℃. The mixed layer depth in WRF-ROMS is significantly greater than that in WRF-SOM and the reanalysis data from

ECMWF. Moreover, the cold deviation of WRF-ROMS at the subsurface continues to conduct upward with the forecast time,210
and finally the predicted value of SST is low in this area as shown in Fig. 5d and 5e. The abnormal cold deviation at the

subsurface is caused by the imprecise description of the ocean processes and the insufficient resolution of the 3-D dynamical

ocean model. In addition, the data assimilation can accelerate the heat loss and intensify the cooling in this area. By

eliminating the influence of initial conditions and the oceanic heat transport, the WRF-SOM can obtain better SST qualities

with the avoidance of biases from the model dynamics and inaccurate seabed topography.215

3.2 Impact on Extended-range Predictions

The SST differences between WRF-ROMS and WRF-SOM spread rapidly in all prediction cases and have obvious

thermodynamic feedback to the atmosphere. For instance, the region with a large deviation of SST is expected to have a

great impact on the atmospheric process (Hao et al., 2016). The first mode of SST and air temperature at 850 hPa is verified

to be positively correlated in most of the East China Sea (Zeng et al., 2010). As shown in Fig. 6, the air temperature at the220
surface is directly affected by the SSTs and there is a strong cold deviation of more than 5 ℃ in the WRF-ROMS in the Sea
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of Okhotsk and Kuril Islands during the extended period. The errors of air temperature at the surface in the Sea of Okhotsk

and Kuril Islands of WRF-SOM are within 3 ℃ in the extended period, which is much closer to the CFSv2 reanalysis

compared with WRF-ROMS.

Since the main deviation between WRF-ROMS and WRF-SOM mainly comes from the sea surface, in order to explore the225
influence of SST on the whole atmosphere, we study the variation of RMSEs of air temperature and geopotential height

(GPH) with different heights to characterize the stability of the subtropical high and the upper atmosphere (Lu and Lin, 2009;

Zhou and Yu, 2009). The RMSEs of air temperature increase with height, and the differences between the two models are

the biggest at the surface (Fig. 7a). The deviation of air temperature gradually disappears when reaching the height of 300

hPa (Fig. 6b). The RMSEs of the GPH also increase with the height (Fig. 8a). However, the differences between the two230
models are opposite to the temperature and increases with the height (Fig. 8b). Compared with the WRF-ROMS, the WRF-

SOM performs better in the forecast of the GPH field in the high, middle, and low atmosphere, as shown in Fig. 8. The

difference between the RMSEs of GPH in the two models are increasing from the lower level to the upper level, which

means that the deviation between the WRF-SOM and the WRF-ROMS is generated from the surface and propagates to the

upper layer. Therefore, combined with the results of air temperature and GPH, the response of variables with different235
physical properties to SST will also appear in different states. In terms of the extended-range prediction, WRF-SOM has

obvious advantages in the areas around the Kuril Islands and the Sea of Okhotsk, where WRF-ROMS has large deviation in

SSTs.

3.3 The prediction of tropical cyclones in extended-range scales

Typhoon is an important extreme weather phenomenon in the extended-range forecast, and the typhoon in the Western240
Pacific has a profound impact on coastal countries (Webster et al., 2014). The typhoon processes are deeply affected by the

air-sea interaction, which can range from days to weeks. Therefore, typhoons are selected as an example of the extreme

weather to discuss the atmospheric predictability in the extended period. Following previous studies (Webster et al., 2014),

we use track and intensity as the key prediction parameters. As the typhoon simulation from August to October 2020 (Fig.

9a-9j), the WRF-SOM can also obtain slightly better prediction paths than the WRF-ROMS after abandoning the ocean245
dynamics framework during the typhoon season. The results of typhoon tracking in the WRF-SOM are better than those in

the WRF-ROMS within 72 hours during the processes of typhoons, as shown in Table 1. The simulation of typhoon tracks is

mainly dominated by steering flow in the atmosphere model, and the improvement of SST can only slightly optimize the

path (Anthes, 1982; Hollland, 1983) such that the forecast results are similar in WRF-SOM and WRF-ROMS. Figure 10a-

10j show the performances of MWS of 11 typhoons from August to October in 2020, both in WRF-SOM and WRF-ROMS.250
Both systems are unable to achieve accurate simulation for super typhoons exceeding 40 m/s. However, BAVI has better

MWS performances in WRF-SOM than in WRF-ROMS, as shown in Fig. 10e. We find that in the process of model

simulation, the typhoon MWS is positively correlated with the SST, which can be caused by the surface heat flux and the

surface water vapor. Among the eleven typhoons including three super ones, there is little difference in typhoon MWS
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between the WRF-SOM and the WRF-ROMS, which means that both the 3-D ocean dynamical ocean model and the SOM255
have defects on the simulation of high-intensity typhoons. As for typhoon simulation, WRF-SOM can obtain comparable

prediction results with WRF-ROMS.

4 Summary and discussion

In this study, to improve the numerical model predictability of monthly extended-range scales, we use the simplified SOM to

restrict the SST bias. It is because the 3-D dynamical ocean model inevitably introduces unnecessary biases from the260
dynamics and seabed topography. Therefore, the experiments are implemented with the WRF-ROMS and WRF-SOM to

investigate the SST deviation in the extended-range period and the associated atmosphere responses. We systematically

evaluate the SST prediction effect of the WRF-SOM and the WRF-ROMS against the HYCOM reanalysis. As for SST

prediction, whether in space or time, the performance of the WRF-SOM is better than that of the WRF-ROMS, especially in

the Okhotsk Sea and the area north of 15°N. WRF-SOM can effectively avoid the deviation in the deep layer from 3-D265
dynamical ocean models. Furthermore, the reduction of SST biases in the WRF-SOM has a significant impact on the

atmosphere at the surface, which not only affects the air temperature but also indirectly changes the GPH field in the middle

and upper layer of the atmosphere. The WRF-SOM can obtain the compatible typhoon path and maximum wind speed

predictions with WRF-ROMS and reduce the consumption of computing resources by roughly 50%.

It is shown by our experiments that the subsurface modeling errors in the 3-D dynamical ocean model could propagate to the270
surface with the forecast lead time and make a large deviation in SST. To improve the predictability in the extended period,

it is of vital importance to constrain the deviation of SST. Based on the good persistence of SST, it is verified that using the

SOM instead of the 3-D dynamical ocean model can have a better prediction skills and save a lot of computing resources.

For the extreme weather event such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.

However, the WRF-SOM also has its own limitations. The overall simulation of SST in WRF-SOM is relatively stable. Due275
to the abandonment of the dynamical framework, the WRF-SOM may not be able to obtain ideal prediction results in some

areas dominated by local dynamic processes (e.g., surface currents, vortex, and turbulence).

Considering the SST characteristics in the extended-range predictions and the limitation of available computing resources,

our method provides a new idea for exploring the predictability in the extended period. At present, our prediction

experiments cover summer, autumn, and the first half of winter, which leads to the lack of representation of other seasons.280
Moreover, we do not pay too much attention to the underlying surface temperature before typhoon generation in this study,

but it is an important driving factor for typhoon generation predictions. In future, it is useful to expand the number of

prediction examples to cover a longer period such as one year, extend the forecast time of each case, and improve the model

horizontal resolution, and further get insights on the WRF-SOM in the predictability of typhoon genesis. Finally, due to the

joint impact of the initial conditions and the external forcing on the extended-range predictability of the atmosphere, we need285
to add the control experiments to quantitatively evaluate the effect of nonlinear errors growth in the atmosphere and external
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forcing differences from the ocean on the extended-range predictions.
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410

415

420

425

Figure 1: Schematic illustration of a Slab Ocean Model (SOM) coupled to the Weather Research and Forecasting model (WRF). τx430
τy are respectively the zonal and meridional component of wind stress at the surface, hu (hv) is the τx-driven (τy-driven) momentum
in the ocean mixed layer, f is Coriolis force, C0 is the specific heat capacity of the ocean water, and hmix is the mixed layer depth.
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440

445

450

455

Figure 2: Time series of a) averaged root mean square errors (RMSEs), and c) anomaly correlation coefficients (ACCs) of
simulated sea surface temperatures (SSTs) against Hybrid Coordinate Ocean Model (HYCOM) reanalysis of total 142 forecast460
cases from July 19th to December 31st, 2020. The comparison of the b) RMSEs, and d) ACC between WRF-SOM and WRF-ROMS
for each case.
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480

485

490

Figure 3: The spatial distributions of the SST errors of a) WRF-SOM, and b) WRF-ROMS against the HYCOM reanalysis of total
142 forecast cases from July 19th to December 31st, 2020 averaged in the 34-day forecast period. The region in green rectangle (35°
N-58° N, 140° E-160° E) is the cold deviation area in WRF-ROMS.
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515

520

525

530

535

Figure 4: The spatial distributions of ACC of forecasted SSTs in the WRF-SOM (left column, panels adg), WRF-ROMS coupled
models (middle column, panels beh) and their comparisons of each grid (right column, panels cfi) in the model domain (green dots)
including cold deviation area (red dots) against HYCOM reanalysis, averaged in the first 10 days (upper panels abc), days 11-20540
(middle panels def), days 21-30 (bottom panels ghi) forecasts of total 142 forecast cases from July 19th to December 31st, 2020.
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555
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565

570

Figure 5: The spatial distribution of the mixed layer depth in the cold deviation area in the a) Ocean Reanalysis, b) WRF-SOM,
and c) WRF-ROMS of total 142 forecast cases from July 19th to December 31st, 2020 averaged in the 34-day forecast period. The575
time-series of averaged water temperature errors at the d) surface in WRF-SOM (red) and WRF-ROMS (blue), and the e)
subsurface in WRF-ROMS (green) against HYCOM reanalysis in the cold deviation area.
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595

600

Figure 6: The spatial distribution of air temperature errors in the cold deviation area at the surface in the a) WRF-SOM, and b)605
WRF-ROMS against Climate Forecast System versions 2 (CFSv2) reanalysis of total 142 forecast cases from July 19th to December
31st, 2020 averaged in the 34-day forecast period.
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630

635

Figure 7: The a) variations of RMSE of air temperature with air pressure between the WRF-SOM and WRF-ROMS against the
CFSv2 reanalysis averaged in the 34-day of total 142 forecast cases from July 19th to December 31st, 2020, and the b) variation of
the difference of RMSEs in two models with the air pressure.
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645

650

Figure 8: The a) variations of RMSEs of the geopotential height (GPH) with air pressure in the WRF-SOM (red) and WRF-ROMS
(blue) against CFSv2 reanalysis of total 142 forecast cases from July 19th to December 31st, 2020, and the b) variation of the
difference of RMSEs in two models with the air pressure.655
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660

665

Figure 9: The typhoon tracks simulated in the WRF-SOM (red) and WRF-ROMS (blue) compared with National Meteorological
Center (NMC) (green) during typhoon season (NMC data, http://typhoon.nmc.cn/web.html).
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Figure 10: The maximum wind speed (MWS) of typhoon simulated in the WRF-SOM (red) and WRF-ROMS (blue) compared
with National Meteorological Center (NMC) (green) during typhoon season (NMC data, http://typhoon.nmc.cn/web.html).685
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Table 1: Typhoon track errors in different simulation periods compared with observations from NMC

Lead time (hour) Model The distance of typhoon center against observations (km)

24 WRF-SOM 171

WRF-ROMs 187

48 WRF-SOM 188

WRF-ROMs 204

72 WRF-SOM 224

WRF-ROMs 247
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